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INTERLEAVED METHOD FOR PARALLEL
IMPLEMENTATION OF THE FAST FOURIER
TRANSFORM

CROSS-REFERENCE TO RELATED
APPLICATION

This application is a continuation of U.S. patent applica-
tion Ser. No. 12/195,711 filed Aug. 21, 2008, which is a
continuation-in-part of International Patent Application No.
PCT/US07/004740 filed Feb. 22, 2007, which is a non-pro-
visional application of U.S. Provisional Patent Application
No. 60/880,560 filed Jan. 16, 2007 and U.S. Provisional
Patent Application No. 60/775,475 filed Feb. 22, 2006, the
content of each of which is incorporated herein by reference.

FIELD OF THE INVENTION

The present invention generally relates to a method for
computing a Fast Fourier Transform (FFT). In one embodi-
ment, the present invention relates to an interleaved method
for computing a Fast Fourier Transform (FFT).

BACKGROUND OF THE INVENTION

A Fast Fourier Transform (FFT) is an efficient algorithm to
compute the Discrete Fourier Transform (DFT) and its
inverse. FFTs are of great importance to a wide variety of
applications, from digital signal processing to solving partial
differential equations to algorithms for quickly multiplying
large integers.

Accordingly, there is a need in the art for an improved
method for computing a Fast Fourier Transform (FFT).

SUMMARY OF THE INVENTION

The present invention generally relates to a method for
computing a Fast Fourier Transform (FFT). In one embodi-
ment, the present invention relates to an interleaved method
for computing a Fast Fourier Transform (FFT). In another
embodiment, the present invention relates to a method for
parallel filter via Fast Fourier Transform (FF).

In one embodiment, the present invention relates to a
method for computing a Fast Fourier Transtorm (FFT) com-
prising the steps of: (i) inputting at least one set of vector
values of a vector x; (ii) computing at least one sum and at
least one difference from the input set of vector values from
vector X; (iii) calculating at least one set of halves of an
even/odd versions of at least one set of results from Step (ii);
(iv) computing at least one set of DCT/DST of the even/odd
halves, respectively; (v) extending the results of the compu-
tation of Step (iv) and combining the results using appropriate
means; (Vi) outputting at least one value with a correct mag-
nitude at one or more desired locations; and (vii) interleaving,
where applicable, the at least one value.

In one instance, in the above method Step (ii) is a pre-
processing step. In one instance, in the above method Step (v)
is accomplished using symmetries.

In one instance, in the above method Step (v) is accom-
plished using one or more of the following Equations:

Fox=yex+i-yox,
Fpx=ydex+i-ydox,
FoYx=yex—i-yox, or

Fplx=ydex—i-ydox.
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2

In one embodiment, the one or more desired locations of
Step (vi)include F . outputs atlocations 1; 3; 5;. . .n—1, where
the vector output is labeled 0 through n—1. In another embodi-
ment, the one or more desired locations of Step (vi) include
F. outputs at locations 2; 6; 10; . . . n-2. In still another
embodiment, the one or more desired locations of Step (vi)
include F . outputs at locations n/8; 3n/8; 51/8; 71/8. In still
yet another embodiment, the one or more desired locations of
Step (vi) include F - outputs at locations n/3; 3n/4. In still yet
another embodiment, the one or more desired locations of
Step (vi) include F . outputs at locations 0; n/2.

In another embodiment, the present invention relates to a
method for computing a Fast Fourier Transtorm (FFT) com-
prising the steps of: (a) inputting into a first processor a first
subset of values of a vector defined as {x(0); x(/2)}; (b)
inputting into a second processor a second subset of values of
the vector defined as {x(n/4); x(3n/4)}; (c) subjecting the
input values for the first and second processors to phase
correction; (d) subjecting the values in the first and second
processors in Step (c) to F . transform and/or F, transform
using an appropriate means whereby at least one output is
generated; (e) computing the even/odd version of the at least
one output of step (d); and (f) computing the sums and dif-
ferences of the results generated by the first and second pro-
Cessors.

In one instance, the above method further utilizes subsets
of values of the vector that include:

{x(0/8); x(3n/8); x(50/8); x(70/8)};

{x(0/16); x(3n116); x(50/16); x(7n/16); x(9n/16); x(11n/

16); x(50/8); x(70/8) x(110/16); x(130/16); x(150/16) };
etc.,

wherein each additional subset of values of the vector is
input into its own processor.

In one embodiment, the F - and/or F , transform of Step (d)
is accomplished using one or more of the following Equa-
tions:

Fox=yex+i-yox,
Fpx=ydex+i-ydox,
Folx=yex—i-yox, or
Fptx=ydex—ivdox.

In one embodiment, the above method involves computing
the sums and differences of three or more processors in Step

®.

In still another embodiment, the present invention relates to
a method for parallel filtering via Fast Fourier Transform
(FFT), the method comprising the steps of: (A) inputting at
least two sets of vector values of a vector x; (B) computing at
least two sums and at least two differences from the input set
of'vector values from vector x; (C) calculating at least two sets
ofhalves of an even/odd versions of at least two sets of results
from Step (B); (D) computing at least one set of DCT/DST of
the even/odd halves, respectively; (E) extending the results of
the computation of Step (D) and combining the results using
appropriate means; (F) outputting at least two values with
correct magnitudes at one or more desired locations; (G)
inputting into a first processor a first subset of the values that
are output in Step (F); (H) inputting into a second processor a
second subset of the values that are output in Step (F); ()
subjecting the input values for the first and second processors
to phase correction; (J) subjecting the values in the first and
second processors in Step (1) to F - transform and/or F, trans-
form using an appropriate means whereby at least one output
is generated; (K) computing the even/odd version of the at
least one output of step (J); and (L) computing the sums and
differences of the results generated by the first and second
processors.
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BRIEF DESCRIPTION OF THE DRAWINGS

FIG. 1A is a representation of a traditional Fourier trans-
form (using Fy) of a step function;

FIG. 1B is a representation of the F, transform that splits
the right half of the result of multiplication by F and puts it
next to the left half;

FIG. 1C is a representation of a centered Fourier transform
using F - that has different values than that of the one pictured
in FIG. 1B, and is centered (i.e., as a vector it has symmetry);

FIG. 2 is a plot (using a smaller number of data values n
than in FIGS. 1A through 1C) that illustrates that the trans-
forms associated with F,, and F. provide different values
when applied to a step function, the centered Fourier trans-
form is the one that is symmetric in this Figure;

FIG. 3 is a plot that interleaves F ,x; and F _x, values from
FIG. 2 resulting in a vector of twice the length (in particular,
this is a F, transform of the vector X, ); and

FIG. 4 is a tree diagram relating to the present invention;

FIG. 5 is another tree diagram relating to the present inven-
tion;

FIG. 6 is still another tree diagram relating to the present
invention; and

FIG. 7 is a diagram showing the progression of an 8 point
FFTP parallel filtering technique relating to the present inven-
tion.

DETAILED DESCRIPTION OF THE INVENTION

The present invention generally relates to a method for
computing a Fast Fourier Transform. In one embodiment, the
present invention relates to an interleaved method for com-
puting a Fast Fourier Transform.

In one embodiment, the present invention relates to a
method for computing a Fast Fourier Transform (FFT) that
involves, among other things, three major points that contrib-
ute, in part, to a new interleaved method of FFTs. These are:
(1) the interleaving method of intertwining the output of two
different shifted Fourier matrices, F .and F,, to obtain the F,
Fourier transform of a vector that is twice the length, and the
corresponding computational tree that applies at different
levels; (2) an even-odd extension theorem for computing the
centered Fourier transform F -; and (3) a method of grouping
various terms in the computational tree so as to reduce the
number of applications of the shifted matrices, and the result-
ing segmentation of the computation that allows parallel
implementation. Based in part on the above, the present
invention yields a method of computing the FFT that includes
anumber of options to a user, so that some items that must be
computed in the traditional method are optional with the
method of the present invention. One advantage of the present
invention is the ability to do a FFT or inverse FFT computa-
tion with a parallel processing structure. The present inven-
tion will be explained in more detail below.

In one embodiment, the approach of the present invention
is at least twice as fast as sequential methods, at least three
times as fast, at least five times as fast, or even faster.

The Interleaving Method:

Shifted Fourier Matrices:

Initially, a shifted Fourier matrix is defined as shown in
equation (1) below:

1 [ehi(u*a)(vw)/n]

p (n)
n

where o is a real-valued shift parameter and O=p, v=n-1.
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4

Initially, some examples of shift parameters that will be
used for the remainder of the text of the disclosure of the
present invention will be discussed. Using the value a=0 inthe
shifted Fourier matrix (Equation (1)) gives the traditional
Fourier matrix, labeled F as discussed below. If a=(n-1)/2,
the shifted Fourier matrix becomes a truly centered Fourier
matrix, labeled F - in the following. And, if a=n/2, the result-
ing shifted Fourier matrix is labeled the Fourier matrix F,. A
portion of the present invention relies on the fact that the
centered Fourier matrix has a number of beneficial properties,
particularly from a computational point of view. The tradi-
tional Fourier matrix Fz and the shifted Fourier matrix F, are
similar, and the result of the action of applying Fourier trans-
forms based on these matrices is a shift to the right of the plot
in the traditional case, making the transform appear centered.

In a 5x5 case the centered Fourier matrix is:

P P
R e
Fo=| 1 1 1 1 1|
o2l 1 p 2
P R

where p=e®™ * is the fifth root of unity. This is a shifted
version of the traditional Fourier matrix shown below:

—
—
—
—
—

—_

hS)
)
0
1S

©e P
F=|1l p* p* o Ff
1 p* 8 @ pi
1 p* o8 pl2 pl

As illustrations of the action of several different shifted
Fourier matrices on vectors, the following examples of the
actions of the different matrices on a step function are pre-
sented below. It should be noted, that the present invention is
not limited to solely the examples contained herein.

Turning to the Figures, FIG. 1A is a representation of a
traditional Fourier transform (using Fj) of a step function;
FIG. 1B is a representation of the F, transform that splits the
right half of the result of multiplication by F z and puts it next
to the left half; and FIG. 1C is a representation of a centered
Fourier transform using F . that has different values than that
of the one pictured in FIG. 1B, and is centered (i.e., as a
vector, it has symmetry). FIG. 2 is a plot (using a smaller
number of data values n than in FIGS. 1A through 1C) that
illustrates that the transforms associated with F, and F . pro-
vide different values when applied to a step function, the
centered Fourier transform is the one that is symmetric in this
Figure.

Interleaving:

In this embodiment of the present invention, the disclosure
undertakes a discussion of the fact that the F,, Fourier trans-
form of vector x of length m can be calculated by a method
that includes interleaving F .. centered and F,, transforms of
half the size of the original vector, n=n/2. The F, transform
is simply a rearrangement of the traditional Fourier matrix F,
so that either of these forms of the traditional Fourier trans-
form can be obtained in this manner.

The interleaving operation of the present invention, starts
by separating the input vector into left and right halves. In one
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embodiment, this includes separating the input as vector x
into alefthalf vector x; and a right half vector x5, where these
halves are defined for n=m/2 by:

x;=[x(1:n) zeros(n,1)]

@
and

xg=[zeros(n,1) x(n+1:m)]

A3)-

Each of these vectors is the same length as the original vector
x and with x=x;+xz. Thus, F x=Fx;+F %;. Further, the
present invention focuses on the left and right halves of the
input vector of size n. For that, define:

x=x(1:n)

@
and

X, =x(n+1:m)

).

These sub-vectors are each half the length of the original
input vector. The interleaving operation varies slightly if the
length n vector fits into the left half or into the right half of the
original input vector x. The left interleaving operation will be
to strictly interleave the outputs of F -~ and F, times x,, with a
similar idea for the right interleave operation. FIG. 3 illus-
trates the magnitude of the result of interleaving transforms
from output in FIG. 2 using the method described below.

The basic interleaving idea is implemented as follows.
First, take the length n transforms: y ~F ,x; and y_=F -x,. For
the interleave left case, strictly interleave the results of these
operations, beginning with the modified y , output. The result-
ing length m vector has magnitude equal to that of F ;x;. For
the interleave right case, change the sign of the entries in y,
before interleaving. After this modification, apply the basic
interleave step as before. The result is a length m vector with
magnitude equal to that of F ;x5.

In this embodiment, no phase adjustments need to be made
if only the magnitude of the Fourier transform is desired. In
that case, one can omit further computations. If, however, the
correct phase is desired, then a few simple phase adjustments
need to be made, and those can be done at the end of the
computation of the entire set of values.

Tree Structure for the Interleaved Fast Fourier Transform:

The beginning of the tree structure is the computation of
the size 2x2 matrix transforms of subsequent length 2 sub-
vectors of the input vector. The following is a description of
computation of the 2x2 F . and F , transforms. This tree struc-
ture can be, in one embodiment, simplified as is shown below.

First, for F,, suppose that input vector x is length two,
X=[X,, X,]. The value of the transform is:

(6).

Note that this computation does not involve any multiplica-
tions.
Next, for F ., the value of the transform is:

Fpx=[x,-%), X1+%;]

™,

where p,=(x,+x,)¥2 and p,=(x,~-x,)¥2. Given the above,
this completes the description of the computation of the 2x2
sized matrices.

Following the computation of the 2x2 matrix transforms,
all F ; transforms are computed by interleaving and involve no
direct F, applications. Thus, subsequent computations
involve a computation of the centered Fourier transform F - of
the next set of data. This is illustrated in the tree diagram
shown in FIG. 4. In one instance, the actual method of the
present invention is not done with the tree of FIG. 4.

Fex=[p,, pJ+i[-p>. 5]
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6

In the tree diagram, the I label on a branch indicates the
output of each part is interleaved to get to the next level, and
the + sign indicates an addition of the output. Computation of
the F . transforms can be preformed with a fast transform, as
described herein.

The Even-Odd Extension Theorem for Computing the Cen-
tered Fourier Transform by C, and S, Transforms:

The centered Fourier transform F . of a vector of length n
may be computed using the C, and S, matrices applied to
length n/2 vectors. There are eight types of discrete cosine
transform matrices (see G. Strang, The Discrete Cosine
Transform, SIAM Review, 41, 135 to 147, 1999)], and C, is
the fourth type, with a similar notation for S,.

The method can be described as follows. For input vectorx,
which can be complex-valued, first form the even and odd
parts of x. Using Matlab notation, this step may be done by:

xe=(x+flipud(x))/2, xo=(x-flipud(x))/2,

for xe the even part and xo the odd part, with flipud meaning
to flip the column vector x “up and down”. Thus, one can see
that x=xe+xo.

The symmetry of the even and odd xe and xo vectors
involves repetition that is not needed. First, take the second
half of each of these symmetric vectors xe and xo. If X is of
length n, then these new vectors are each of length n/2. Next
compute the cosine transform of the second half of the even
vector, and the sine transform of the second half of the odd
vector:

ye:=Cyxe(n/2+1:n), yo:=S,xo(n/2+1:n), (®)

where each of the resulting vectors is of length n/2. Finally,
extend the resulting vectors to be of length n in the following
manner: Let yex be the even extension of ye, so that yex is an
even vector with sub-vector ye as the latter half of yex. Simi-
larly let yox be the odd extension of yo.

The main result can be expressed by the following equa-
tion:

F x=yex+i-yox

©.
Note that Equation (7) is just a special case of this form. Also
of note, at this point, is that the inverse transform only differs
from the forward transform in that the plus sign in Equation
(9) is replaced by a minus, so that F .~! x=yex—i-yox.

It is important to note that in this embodiment the actual
computations are done in Equation (8) and involve real-val-
ued matrices multiplying possibly complex-valued vectors.
Those vectors are not of size n but of size n/2. Note also that
if input vector x is even or odd, then half of these computa-
tions need not take place, since xo is zero if X is even, and xe
is zero if x is odd.

The following is Matlab pseudo-code to preform the com-
putation:

n=length(x);

C4=C4(n/2); S4=S4(n/2);
xe=(x+flipud(x))/2; xo=(x—flipud(x))/2;
ye=C4*xe(n/2+1:n); yo=S4*x0(n/2+1:n);

Fux=[flipud(ye);ye]+i*[-flipud(yo);yo].

This result reduces the computation of the F - transforms to
thatof'the C,, S, applications. These can be computed in a fast
algorithm that starts with fast algorithms for C, and S, appli-
cations. These are described in P. Lee and F.-Y. Huang,
Restructured Recursive DCT and DST Algorithms, IEEE
Trans. Sig. Proc., v. 42 (7), pp. 1600 to 1609, 1994; and 7.
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Cvetkovic and M. V. Pepovic, New fast recursive algorithms
for the computation of discrete cosine and sine transforms,
IEEE Trans. Sig. Proc., v. 40 (8), pp. 2083 to 2086, 1992.
Then a fast way computing the C, transform from the C,
transform result is given in C. W. Kok, Fast Algorithm for
Computing Discrete Cosine Transform, IEEE Trans. Sig.
Proc., v. 45 (3), pp. 757 to 760, 1997.

The following exemplary proof of Equation (9) involves
the structure of the F - matrix and the even and odd vectors,
xeh=xe(n/2+1:n) and xoh=xo(n/2+1:n), respectively. The
vectors xeh and xoh are half the length of the original input
vector x. Note that xe is the even extension of xeh and that xo
is the odd extension of xoh.

Proof of Equation (9):

LetR be the nxn reversal matrix thathas 1’s on the diagonal
that goes from bottom left to upper right of an otherwise zero
matrix. Pre-multiplying a matrix A by R to determine R. A
reverses the order of each individual column in A. But post-
multiplying a matrix A by R to determine A. R reverses the
order of the columns in matrix A. It is not difficult to verify
that:

1[R-C4-R R-C4} (10)

i[R-S4-R —R-Sy
Fe== z
Ci-R Gy

+
2 2| =S4-R Sy

Pre-multiplying a column vector by R simply reverses the
order of this column vector, so that:

R-xeh} [—R-xoh} (11
+ .

X=X€+X0=|:

xeh xoh
Thus,
R-xeh —R-xoh
Fc-x:FC-[ +FC-[ ]
xeh xoh

Consider the application of F . in the first term of Equation
(11) with the first term in the representation for F - is as given
in Equation (10). This term becomes

1[R-C4-R R-C4} [R-xeh} 1[R-C4-R-R-xeh+R-C4-xeh (12)

2l R o xeh | 2| C4-R-R-xeh+Cy-xeh
But R is self-inverse, so that R-R=I, and the right side of
Equation (12) becomes

[R-C4-xeh}
Cy - xeh

which is simply the even extension of xeh, as claimed.

Next, consider the application of F. in the first term in
Equation (11) with the second part of the representation for
F . as given in Equation (10). This term becomes

i[R-S4-R —R-S4} [R-xeh} 1[R-S4-R-R-xeh—R-S4-xeh (13)

2| -S4-R 5y xeh | 2| -S4 R-R-xeh+Sy-xeh

But using R-R=I, as above, the right side of Equation (13)
becomes the zero vector. Thus, the first term in Equation (11)
becomes:
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as claimed. The application of F  to the second term in Equa-
tion (11) can similarly be shown to be:

. . [—R-S4-xoh}
i-yox=1i- .
Sy -x0h

Inverse F - Transform:

It can be shown that the matrix inverse to F . is its own third
power, i.e. F.'=F .. In particular, this is related to the result
that the F . matrix has eigenvalues that are only from the set
{1, i}, so that F-F 2=F .*=1.

Further, it can be shown that F ->=R, where R is the “rever-
sal” matrix used in the proof above. Thus

Fc'=F2F=RF, (14).

But applying Equation (14) along with Equation (9) shows
that

FL-x=R-F ~x=R-(yex+i-vox)=R-vex+i-R-yox (15).

Thereversal matrix R has no effect on the even vector yex; but
R-yox=-yox. This means that

F o lx=yex—i-yox

The Modified Even-Odd Extension Theorem for Computing
the F, Fourier Transform by C, and S, Transforms:

The present invention utilizes, in one embodiment, Matlab
programs for the computation of the F, matrix transform of a
vector, using sub-matrices C, and S; multiplying “even” and
“odd” terms from the input vector. It should be noted that the
present invention is not limited solely to the use of Matlab
programs. Rather, any suitable program could be used and/or
developed based on the teachings contained within the
present text.

The main result can be expressed by the following Equa-
tion:

(16).

Fpx=ydex+i-ydox (17).

For input vector X, which may be complex-valued, first
form adjusted “even” and “odd” parts of x. Using Matlab
notation, this step may be done by:

xe=(x+rx)/2; xo=(x-rx)/2,

where r is the matrix with one’s going up on the “superdiago-
nal” (the diagonal+1) and a 1 in the lower right corner, for xe
the even part and xo the odd part. It can be seen that x=xe+xo.

The symmetry of the even and odd xe and xo vectors
involves repetition that is not needed. The vector xe has xe(n)
fixed, but has even symmetry otherwise. A similar situation
exists for xo. Ignoring symmetry, if x is of length n; then xe
may be completely described using n/2+1 points, and xo with
n/2-1 points. Next compute the cosine transform C, of the
appropriate part of the xe vector, and the sine transform S, of

the appropriate part of the xo vector:
ye:=C, xe(m/2:n); yo:=Sxom/2+1:mn-1) (18).

Finally, extend the resulting vectors to be of length n in the
following manner: let

ydex=[flipud(ye(2:n/2)); ye].
Similarly let

yox=[-flipud(yo);0;y0.0].
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Theresult is the formula for F , provided above. Similar to the
result for F . in the previous section, the inverse F, transform
can be computed by changing the sign in Equation (17) to
read ydex—i-ydox.

A Method of Reducing the Number of C,, S, Applications
and the Parallel Implementation:

The tree structure, as illustrated in FIG. 4, discussed above
can be simplified, via the present invention, thereby reducing
the amount of computations dramatically. This allows a par-
allel implementation of the computation. See the computa-
tional diagram of FIG. 5 for an exemplary sequential imple-
mentation.

First, the tree structure shows a number of different F,,
applications to 2x2 sub-vectors. However, this can be reduced
to a single F, application, by simply applying the summation
first. There is a similar result for the applications of F .. That
is, each of the F . computations that are done for a part of the
computational tree of FIG. 4, that are at the same level, can be
done by asingle F - application involving a C,, S, implemen-
tation as described in “The Even-Odd Extension Theorem for
Computing the Centered Fourier Transform by C, and S,
Transforms™ section above, following a summation. That
summation depends on the level in the tree, and is described
herein.

This technique segments the computations, breaking the
computational tree of FIG. 4 into separate independent seg-
ments. In particular, there are log,(n) independent segments,
where n is the length of the input vector x.

The segment related to the F, application results in deter-
mining precisely two output values: the dc and the value in the
n/2 location of the final output. The segment connected to the
F - applications at the lowest level of the computational tree
discussed earlier, and in FIG. 4, and results in the determina-
tion of exactly two output values at locations n/4 and 3n/4 in
the output vector. The segments connected to F - applications
at the next highest levels of the computational tree produce an
exponentially increasing number of output values. For
example, the segment connected to the third level of the tree
produces four output values, at locations n/8, 3n/8, 5n/8, 7n/8.

In general, the computation is segmented into log,(n) dif-
ferent components, and the output produced by those difter-
ent components is at locations:

0, n/2

/4, 3n/4

/8, 31/8, 51n/8, 7n18

/16, 30/16, 50/16, 70/16, 90/16, 11n/16, 130/16, 150/16

etc.

Other than the first segment listed above, the typical seg-
ment produces an output of transforms values at locations

w12
(+)'E

fork=0,1,...,2'-1forj=2, ..., log,(n)-1. The results are
independent and can be computed in parallel, then interleaved
into the correct position for the transform value.

Pre-Transform Processing:

The summations at each level of the tree, as noted above,
can be done prior to the F - application.

Prior to the DCT/DST transformations, the set of sums/
differences can be done all at once, or partially done for the
parallel implementation, as described in the following sec-
tion. In order to do a complete set of summations, one coding
that can be used involves two nxlog,(n)-sized matrices A
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(additions) and D (differences). The first column of A is input
vector X, the first column of D is undeclared. Then a loop of
form:

m=n;

for k=1:log,(n);

m=m/2;
A(l:mk)=A(1:mk-1)+A(m+1:2*m,k-1);

D(1:mk)=A(l:m,k-1)-A(m+1:2*m k-1);
is enough to compute the sums A and differences D needed
for the complete preprocessing. The total flop count for this
step is 2n-4, if all done at once for the sequential computa-
tion.

Then for matrix C of size n/2xlog(n) the sums/differences
are of the same data, but folded:

C1:2,1)=[4(1p)-4Q2p); A(1.p)+4(2.p)];

C(1:222)=[DQ2,p)+D(1,p), D2,p)-D(1,p)];

With initial value of m=2, a loop constructs the rest of matrix
C as follows:

for k=1:log,(n)-2;

C(1:2%m, 2+4k)=[D(m+1:2*m,p-k)+ipud(D(1:m,p-k));
D(m+1:2%m,p—k)-fipud(D(1:m,p-k)));

m=2*%m.

The resulting matrix C is the input to the DCT/DST trans-
forms, as described below. The total number of flops for the
entire set of computations of this section is 3/2n log,(n)-3/
2n+2; assuming real data.

Details:

For determining the flop count of the individual parts ofthe
parallel implementation, it is important to note that the total
number of additions/subtractions prior to the F ~ application is
independent of the part described below, and totals n in each
case. The flop count is computed assuming real data. The
computational structure for the parallel implementation is
given in FIG. 6.

Case 1: Largest Output:

This independent computation produces F , output at loca-
tions 1; 3; 5; . . . n—1, where the vector output is labeled 0
through n-1. This requires subroutine (1)’s D(:, 2), the sec-
ond column of matrix D; which uses a difference of halves of
input vector x. The flop count is n/2. Subsequently, it requires
subroutine (2)’s C(:, p), the p’th column of matrix C; which is
computed using a flip, then a sum and difference of halves of
D(:, 2). This is a flop count of n/4+n/4 for a total flop count of
n. This input is the xe and xo that goes into the F - computation
as discussed in “The Even-Odd Extension Theorem for Com-
puting the Centered Fourier Transform by C, and S, Trans-
forms” section above.

Case 2: Next Largest Output:

This independent computation produces F ,, output at loca-
tions 2; 6; 10; . . . n-2. This requires subroutine (1)’s D(:, 3),
the third column of matrix D; which uses a difference of
halves of the second column of add matrix A(:, 2) of subrou-
tine (1). The flop count is n/2+n/4. Subsequently, this requires
subroutine (2)’s C(:, p-1), the (p—1)st column of matrix C;
which is computed using a flip, then a sum and difference of
halves of D(:, 3). This is a flop count of n/4 for a total flop
count of n.

This pattern continues. One continues the details with the
output at four locations.

Case p-2: Output at n/8; 3n/8; 51/8; 7n/8:

This independent computation requires subroutine (1)’s
D(:, p-1), the (p-1)st column of matrix D; which uses a
difference of halves of the p—2nd column of A, and that is
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computed recursively. Flop count n/2+n/4+n/8+ . . . +
n/272=27_4=n-4. Subsequently, this requires subroutine
(2)’s C(:, 3), the third column of matrix C; which is computed
using a flip, then a sum and difterence of halves of D(:, p-1),
which is of length 4. That’s a flop count of 4 for a total flop
count of n-4+4=n.

Case p-1: Output at n/4; 3n/4:

This independent computation requires subroutine (1)’s
D(:, p), the pth column of matrix D, which utilizes a difter-
ence of halves of the p—1st column of A, and that is computed
recursively. Flop count n/2410/441/8+ . . . +n/27-2=27-2=n-2.
Subsequently, it requires subroutine (2)’s C(:, 2), the second
column of matrix C; which is computed using a flip, then a
sum and difference of the one-element halves of D(:, p),
which is of length 2. That’s a flop count of 2 for a total flop
count of n-2+2=n.

Case p: Output at 0; n/2:

Depending on the parallel implementation, this operation
can be included with the previous case. The cases listed above
output the xe and xo inputs to the F . computation as described
in “The Even-Odd Extension Theorem for Computing the
Centered Fourier Transform by C, and S, Transforms” sec-
tion above. However, this case outputs final F, values and
needs no further computation. This case requires subroutine
(1)’s A(:, p) column, so that many of the computations of the
previous case are repeated herein. This column of A consists
of two entries and the first column of matrix C; whose values
are the final values atlocations 0 and n/2. The flop count to get
these values is the same as the previous case.

Reversing the Order of the Computation and Parallel Filter-
ing:

In another embodiment, the present invention relates to a
method that permits a reversal in the order of computation and
still permits parallel Fast Fourier Transform (FFTP).

As is stated above, in this embodiment, the order of the
different types of computations in the FFTP algorithm can be
reversed, resulting in an algorithm that can be combined with
the FFTP computation as discussed above to yield a new
method for parallel filtering that requires very little commu-
nication among different processors.

Background: Filtering in the Frequency Domain:

Filtering is very effective in the frequency domain, but both
a forward and an inverse FFT are required. This type of
filtering makes use of the relation that the transform of a
convolution is the simple product of the transforms of the two
signals in the convolution. That is, for input signal x and filter
function h, the filter represented by convolution x*h is equiva-
lent to the inverse Fourier transform of the simple product
X-H; where X is the transform of x and H is the transform of
h.

Computing the FFTP in the Reverse Order:

In one embodiment, the order of the FFTP computation as
outlined above includes:

(1) Compute sums and differences of input vector x (pre-
processing);

(ii) Calculate halves of even/odd versions of some results
of the sums/differences;

(iii) Compute the DCT/DST of even/odd halves, respec-
tively;

(iv) Extend (using symmetries) the results of the previous
computation and combine using Equation (9) or (17);

(v) Output the values with the correct magnitude at the
locations listed in the section entitled “A Method of Reducing
the Number of C,,S, Applications and the Parallel Implemen-
tation” above, and interleave.
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In this embodiment, one has the option of performing a
phase correction at the end of the computation to obtain the
correct phase at each point.

In another embodiment, a different method of computing
the FFT is obtained by completely reversing this order of
computation. In this embodiment, the input to each processor
is a small subset of values of the original vector. For example,
one processor would have input {x(0); x(n/2)} and another
would have input {x(n/4); x(3n/4)}, and so forth. These sets of
input values are the same as those sets listed for the output, as
is discussed above. The approach of this embodiment has the
advantage of simplifying the input to each processor, since
only a subset of the original vector is input to each processor.

Next, the input values need to be phase corrected. Then the
F - transform is applied using Equation (9) or (17), and then
the even/odd version of the output is computed. The final step
in this reverse ordering is the computation of the sums and
differences of the results of each processor, where the output
of'each processor is combined.

Note that this reverse order of the computation is not com-
puting an inverse transform but is computing the correct
transform in a different but still parallel manner. One addi-
tional item that is needed for this embodiment, is that the
phase correction must be applied to the input, which is simply
an option in the previous embodiments discussed above.

Parallel Filtering:

One advantage of the approach described immediately
above is in combining it with the computational method
described earlier to create a frequency domain filtering option
that can be done in parallel with very little communication
among processors.

If h is the vector of filter coefficients and x is the input
vector, then this filtering computes the convolution x*h by
transforming to the Fourier domain, multiplying the trans-
forms, and then inverse transforming the result to end in the
time domain.

In one embodiment, this parallel filtering method begins
with the computational method in the original order, as is
noted above. The program introduces both x and h into the
processors as described above. The sums/differences prepro-
cessing step can be performed using the same type of com-
putations on each of x and h independently. Then each pro-
cessor receives the appropriate pre-processed output for both
x and h; so that the input vector and filter coefficients will
remain in that processor. At the end of the above five step
process, the output results in one processor containing a sub-
set of values of the transform of x and the same subset of
values of the transform of h. For example, one processor
contains {X(0); X(n/2)} and {H(0); H(n/2)}; a second pro-
cessor containing {X(0/4); X(3n/4)} and {H(n/4); H(3n/4)};
and so on. These Fourier transform values are then multiplied
in that processor in each case. That part completes the com-
putation of both the Fourier transform of x and of h and the
multiplication in the frequency domain of their Fourier trans-
forms.

To return to the time domain with the filtered signal, the
inverse transform needs to be computed. But the input to the
FFTP algorithm in the reverse order can be, in one embodi-
ment, just the multiplied values. For example, {X(0)-H(0),
X(0/2)-H(n/2)} in one processor, {X(n/4)-H(w/4), X(3n/4)-H
(3n/4)} in another processor, and so on, as described for the
algorithm in reverse order above. The rest of the process
proceeds in the reverse order, with the one adjustment that
inverse transform is applied, as in Equation (16) or the similar
result for the inverse of F ,, instead of the forward transform.
The output is the correct filtered signal.
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This embodiment of the present invention, is believed to be
a radically new way of computing the filtered values of an
input vector x by filter h, and is believed to be faster than
standard filtering operations when employing a parallel pro-
Cessor.

FIG. 7 illustrates the idea of filtering in the frequency
domain using parallel filtering and accomplishing the same in
much less time. The Figure is particular to the case of a length
8 vector, but this is similar to filtering with Fourier Transform
for a vector whose length is an arbitrary power of 2, i.e., L=2"
for n=1.

FIG. 7 flows from left to right. The vector’s components are
labeled O through 7, and are listed vertically in the leftmost
column. Filtering in the Fourier domain is accomplished by:
(1) computing the Fourier Transform of the input vector using
a parallel computation technique; (ii) multiplying that result
by the symmetric filter function H, using term-by-term mul-
tiplication, but omitting the calculation corresponding to the
expression:

Fux=[flipud(ye);yej+i*[-flipud(yo);yo]

which is a portion of the Matlab pseudo-code for performing
the computation; and (iii) applying the Fourier Transform in
the reverse order to the result.

In FIG. 7, step (i) is done in the first three columns, for the
vector of length 8, though any vector length fitting the format
may be used. The first three columns indicate the operations
executed upon the input vector using the interleaved compu-
tation of the FFT. Alternatively, any parallel computation
technique may be used in place of the interleaved computa-
tion.

It is important to note that according to this method, certain
operations need not be done because the filtering operation
does not need the FFT output in the correct order. For
example, the calculation corresponding to the expression for
the Matlab pseudo-code referred to above may be omitted.

The operations “sumdiff” and diffsumflip” are vector
operations and are defined as follows: sumdiff(x(1:n))=[x(1:
n/2)+x(n/2+1:n), x(1:n/2)-x(0n/2+1:n)], and diffsumflip(x(1:
n))=[(x(n:-1:0/2+1)-x(1:1/2), x(0/2:-1:1)+x(n/2+1:n)].
Modern computers have vector operation capabilities, so
these operations can be done quickly. The other operations in
FIG. 7 are the operations of rotation “r” and inverse rotation
“invr”. These operations are well-known to those working in
this field. For example, a rotation “r” of angle pi/8 is symbol-
ized in FIG. 7 as “r(1/8)”, and takes the vector [x(1), x(2)] to
the vector [c¢*x(1)+s*x(2),-s*x(1)+c*x(2)], where c=cos(pi/
8) and s=sin(pi/8).

In FIG. 7, step (ii) is done in the middle, at the point where
the Figure uses vertical lines. The filter function H values are
not applied in order, but in a permuted order, as indicated.

Step (iii) of FIG. 7 shows the inverse Fourier Transform, or
the Fourier Transform in reverse order, in the final three
columns, again flowing left to right. The operations are nearly
the same as for step (i), and the output is in the same order as
the original input. This output is the filtered input.

The parallelism is inferred by the diagram with the broad
horizontal line separating parts of the computation. For this
small vector length of 8, just two processors would be
employed, and the computations illustrated in columns 2
through 6 may be completely separated and done by two
processors. For a vector of larger length, the number of pro-
cessors could be much more than two.
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Computational Advantages of the Interleaved Method:

There are a number of computational advantages for the
interleaving method of computing the FFT.

(1) One advantage of the present invention is that the result
of the computation is the standard DFT. The same as com-
puted by the old Cooley-Tukey method;

(2) Another advantage of the present invention is that since
the computation can be done with independent segments,
parallel computing methods can be used to simultaneously
compute the different terms that are needed for interleaving.
This contrasts with traditional methods, since parallel com-
puting is not effective in increasing the speed of computation
for the standard Cooley-Tukey method;

(3) Another advantage of the present invention is that the
number of floating point operations is low for the computa-
tion as discussed above, independent of the parallel imple-
mentation;

(4) Still another advantage of the present invention is that
the inverse transform and the forward transform can be com-
puted simultaneously; and

(5) Still another advantage of the present invention is that in
general, the computation is segmented into log,(n) different
components, and the output produced by those different com-
ponents for a vector of length n is at locations:

0, n/2

n/4, 3n/4

/8, 3n/8, 51/8, 7n/8

/16, 3n/16, 5n/16, 7n/16, 9n/16, 11n/16, 13n/16, 150/16

etc.

The computation for output at any of those locations can be
done independently of the output for the other locations. The
results are interleaved to create the complete transform.

(6) Still another advantage of the present invention is that
the result of the computation provides the correct absolute
value. A twiddle factor computation is applied only if the
correct phase is desired, so there are a number of options with
the approach of the present invention.

(7) Still another advantage of the present invention is that
the inverse transform can be computed with a simple change
in the algorithm. In particular, the inverse transform can be
computed simultaneously with the forward transform.

(8) Still another advantage of the present invention is that
the parallel computation is “embarrassingly” parallel.

(9) Still another advantage of the present invention is that
the user has the option of doing a faster computation that is
coarser. For example, for the case of a vector of length 16, the
user could choose to only perform the calculation of the 8
values at locations n/16, 3n/16, . . ., 15n/16. Those values can
be used to provide a coarse output of the transform, based on
the higher resolution. In such an embodiment, it would be a
trade-off between speed of computation and coarseness of the
transform. If desired, the other values could be computed later
and included in a higher resolution version of the transform at
that time.

This could be particularly helpful for the two-dimensional
FFT needed in MRI imaging, where an image of size NxN
requires 2N different one-dimensional FFTs to be computed.
A coarse version could be presented faster, with the higher
resolution filled in later.

One result of the present invention is a radically new
method of computing the FFT that includes a number of
options to a user, so that some items that must be computed in
the traditional Cooley-Tukey method are simply options with
the approach of the present invention. One interesting result is
the ability to do the FFT or inverse FFT computation with a



US 9,298,674 B2

15

parallel processing structure. In doing the computation, the
speed increases depend on the number of processors avail-
able.

Although the invention has been described in detail with
particular reference to certain embodiments detailed herein,
other embodiments can achieve the same results. Variations
and modifications of the present invention will be obvious to
those skilled in the art and the present invention is intended to
cover in the appended claims all such modifications and
equivalents.

The invention claimed is:
1. A method for processing a vector having at least one
dimension comprising the steps of:

obtaining a vector having at least one dimension, the vector
having one or more vector values; and

computing a Fast Fourier Transform (FFT) of the vector,
comprising the steps of:

providing a first processor and a second processor;

inputting at least one set of vector values of the vector into
either of the first or second processors;

computing at least one sum and at least one difference from
the input set of vector values from the vector;

calculating from the results of the computing step at least
one set of halves of an even vector, such that the even
vector has a first half and a second half;
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calculating from the results of the computing step at least
one set of halves of an odd vector, such that the odd
vector has a first half and a second half;
computing in parallel simultaneously, at least one discrete
cosine transform (DCT) of either of the first half or the
second half of the even vector by the first processor, and
at least one discrete sine transform (DST) of either of the
first half or the second half of the odd vector by the
second processor;
processing the output of the discrete cosine transform
(DCT) and the output of the discrete sine transform
(DST) from the second computing step so that they are
made twice as large;
combining the results of the processing step;
outputting at least one value from the combining step with
a correct magnitude at one or more desired locations;
and
interleaving the at least one value to compute the Fast
Fourier Transform of the vector.
2. The method of claim 1, wherein the vector is one-dimen-
sional.
3. The method of claim 1, wherein the vector is two-
dimensional.
4. The method of claim 1, wherein the vector is three-
dimensional.



